
UNITED STATES PATENT AND TRADEMARK OFFICE
UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO. FILING DATE FIRST NAMED INVENTOR ATTORNEY DOCKET NO. CONFIRMATION NO.

13/290,848 11/07/2011 Ivan Schreter 34874-821F01US 1015

64280 7590 06/04/2020

Mintz Levin/SAP
Mintz Levin Cohn Ferris Glovsky and Popeo, P.C.
One Financial Center
Boston, MA 02111

EXAMINER

AYASH, MARWAN

ART UNIT PAPER NUMBER

2133

NOTIFICATION DATE DELIVERY MODE

06/04/2020 ELECTRONIC

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Notice of the Office communication was sent electronically on above-indicated "Notification Date" to the
following e-mail address(es):

IPDocketingBOS@mintz.com
IPFileroombos@mintz.com
mintzdocketing@cpaglobal.com

PTOL-90A (Rev. 04/07)

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

Ex parte IVAN SCHRETER and DANIEL BOOSS

Appeal 2019-005889

Application 13/290,848
Technology Center 2100

BEFORE JOHNNY A. KUMAR, BETH Z. SHAW, and
JASON M. REPKO, Administrative Patent Judges.

KUMAR, Administrative Patent Judge.

DECISION ON APPEAL
Pursuant to 35 U.S.C. § 134(a), Appellant1 appeals the Final Rejection

of claims 13, 19, 24, 27, 28, 31–34, and 36. We have jurisdiction under

35 U.S.C. § 6(b).

 We AFFIRM.

1 We use the word “Appellant” to refer to “applicant” as defined in
37 C.F.R. § 1.42. According to Appellant, SAP SE is the real party in
interest. Appeal Br. 2.

Appeal 2019-005889
Application 13/290,848

 2

INVENTION

 The claimed invention relates to process-based memory allocation to

dynamically allocate portions of memory to processes and free portions of

memory when they are no longer needed. Spec. ¶¶ 1–2. Claim 13 is

illustrative of the invention and is reproduced below:

13. A method comprising:

assigning, by a memory allocator, a temporary memory limit to

each of a plurality of processes requiring memory in a shared
memory, the assigning of the temporary memory limit being based on
a vector in the shared memory, the vector comprising a plurality of
slots, each slot storing, for a corresponding one of the plurality of
processes, a unique identifier for the corresponding one of the
plurality of processes, a quantity of bytes allocated to the
corresponding one of the plurality of processes, and the temporary
memory limit for memory consumption by the corresponding one of
the plurality of processes, wherein a sum of each of the temporary
memory limits stored in the vector cannot exceed a global memory
limit representative of a maximum amount of shared memory to be
consumed by the plurality of processes;

receiving a memory request of a first process of the plurality of

processes;

determining, based on the vector, that the first process has

exceeded a first temporary memory limit and/or that increasing the
first temporary memory limit would exceed the global memory limit;

signaling, in response to the determining, a second process of

the plurality of processes to reduce a second temporary memory limit
of the second process;

reducing, during execution of the second process of the

plurality of processes and based on the determining, the second
temporary memory limit corresponding to the second process being
executed, the second process releasing an amount of memory to the

Appeal 2019-005889
Application 13/290,848

 3

shared memory in response to the reducing and storing the released
memory in a process-local cache, the amount of memory released
proportional to the overall usage of the second temporary memory
limit of the second process; and

signaling, in response to reducing the second temporary

memory limit of the second process, the first process to allocate
memory from the shared memory.

Appeal Br. 23–24 (Claims App.) (emphases added to indicate limitations in

dispute).

REJECTION

 Claims 13, 19, 24, 27, 28, 31–34, and 36 stand rejected under

35 U.S.C. § 103(a) as being unpatentable over Knowles et al. (US

2011/0138147 A1; published June 9, 2011) (“Knowles”), Pliss et al. (US

7,814,290 B1; issued Oct. 12, 2010) (“Pliss”), and Chekuri et al. (US

6,779,183 B1; issued Aug. 17, 2004) (“Chekuri”). Final Act. 4–8.

ANALYSIS

We have only considered those arguments that Appellant actually

raised in the Briefs.2 Arguments Appellant could have made, but chose not

to make, in the Briefs have not been considered and are deemed to be

waived. See 37 C.F.R. § 41.37(c)(1)(iv) (2018).

2 Claims 19 and 32–34 are not argued separately from claim 13 in either of
Appellant’s briefs (Appeal Br. 13–21; Reply Br. 2–14), and will not be
separately addressed. Claim 27 is not argued separately from claim 24 in
either of Appellant’s briefs (Appeal Br. 13–21; Reply Br. 2–14), and will not
be separately addressed. Claim 31 is not argued separately from claim 28 in
either of Appellant’s briefs (Appeal Br. 13–21; Reply Br. 2–14), and will not
be separately addressed.

Appeal 2019-005889
Application 13/290,848

 4

A. Whether the combination of Knowles, Pliss, and Chekuri teaches a
vector comprising a plurality of slots, each slot storing, for a
corresponding one of the plurality of processes, a unique identifier for
the corresponding one of the plurality of processes, a quantity of bytes
allocated to the corresponding one of the plurality of processes, and
the temporary memory limit for memory consumption by the
corresponding one of the plurality of processes

Regarding the claimed vector comprising a plurality of slots, each slot

storing, for a corresponding one of the plurality of processes, a unique

identifier for the corresponding one of the processes (hereinafter “unique

identifier” limitation), a quantity of bytes allocated to the corresponding one

of the processes (hereinafter “quantity of bytes” limitation), and the

temporary memory limit for memory consumption by the corresponding one

of the processes (hereinafter “temporary memory limit” limitation), the

Examiner finds that Knowles teaches, inter alia:

a vector data structure, used interchangeably with a
table/tabular data structure, may store, within slots/entries, data
pertinent to the tracking and accounting of memory resources
associated with a process/VM, including the consumer/user of
the resources (VM/process identifier), the “current usage” or an
“actual memory usage value” (Knowles abstract) also known as
the quantity of bytes allocated to the process/VM, along with a
temporary memory limit for memory consumption by the
process/VM, disclosed “a dynamic maximum” or “target
memory amount” in fig 3b of Knowles[].

Ans. 6 (emphasis omitted). The Examiner determines, in particular, that a

broadest reasonable interpretation of “a vector . . . comprising a plurality of

slots,” is a data or table that has entries, slots, rows, or columns for storing a

process or virtual machine. Ans. 4; see also Final Act. 7. The Examiner

Appeal 2019-005889
Application 13/290,848

 5

further finds that Chekuri teaches a vector. Final Act. 7 (citing Chekuri

3:43–47).

 Appellant contends that Knowles does not teach a single “vector”

storing the temporary limits for the executed processes sharing memory, let

alone the unique identifier, quantity of bytes, and temporary memory limit

limitations about each process stored in the slots of the vector. Appeal Br.

15–16; see also Reply Br. 2, 7–10. Appellant argues that the vector is not an

obvious interchangeable data structure with the tabular data structure of

Knowles. Reply Br. 3. Appellant further argues that the “general discussion

of a vector in Chekuri” (emphasis omitted) does not teach a vector having

the unique identifier, quantity of bytes, and temporary memory limit

limitations (Appeal Br. 15; Reply Br. 9), nor does Pliss teach the claimed

vector having those features. Appeal Br. 17–18.

“In the patentability context, claims are to be given their broadest

reasonable interpretations . . . [and] limitations are not to be read into the

claims from the specification.” In re Van Geuns, 988 F.2d 1181, 1184 (Fed.

Cir. 1993) (citations omitted). Any special meaning assigned to a term

“must be sufficiently clear in the specification that any departure from

common usage would be so understood by a person of experience in the

field of the invention.” Multiform Desiccants, Inc. v. Medzam, Ltd., 133

F.3d 1473, 1477 (Fed. Cir. 1998); see also Helmsderfer v. Bobrick

Washroom Equip., Inc., 527 F.3d 1379, 1381 (Fed. Cir. 2008) (“A patentee

may act as its own lexicographer and assign to a term a unique definition

that is different from its ordinary and customary meaning; however, a

patentee must clearly express that intent in the written description.”). Absent

an express “intent to impart a novel meaning to the claim terms, the words

Appeal 2019-005889
Application 13/290,848

 6

are presumed to take on the ordinary and customary meanings attributed to

them by those of ordinary skill in the art.” Brookhill-Wilk 1, LLC. v. Intuitive

Surgical, Inc., 334 F.3d 1294, 1298 (Fed. Cir. 2003) (citation omitted).

 We find unavailing Appellant’s argument that the table or database

having entry slots of Knowles (see Knowles ¶ 87) is an unreasonably broad

construction of “vector” (Appeal Br. 14–15; Reply Br. 3, 9), as the term is

interpreted in light of Appellant’s Specification. Although Appellant argues

that the term “vector” is sufficiently disclosed in the Specification, the

sufficiency of disclosure alone does not determine a broadest reasonable

interpretation of the term.

 Appellant’s Specification discloses that, “[t]he memory allocator can

use a vector in shared memory to store memory limits, current memory

consumption and control data. Each process can have an associated slot in

the vector.” Spec. ¶ 6. Figure 2 illustrates the memory allocator and the

shared memory:

Appeal 2019-005889
Application 13/290,848

 7

Figure 2, above, is a diagram illustrating, a memory allocator 210 allocating

certain amounts or portions of memory 230. Spec. ¶ 15. The Specification

discloses that, “a slot is stored in a vector in shared memory 232. Each slot

contains process specific information about the process 220i…n and its

consumption of memory 230.” Id.¶ 16. Based on the above-portions of

Appellant’s Specification, the claimed vector is disclosed as being a portion

of a shared memory in which a slot is stored, the slot containing information.

Id. at ¶¶ 6, 16. We, therefore, determine that a table or database falls within

the broadest reasonable interpretation of a vector as it is described in

Appellant’s Specification (Id., Spec. Fig. 2; see also Ans. 3–4), because a

table or database has slots that contain information.

 Furthermore, the Examiner proposes modifying Chekuri’s vector with

the features of Pliss and Knowles. See Final Act. 4–7; Ans. 5–7. Therefore,

Appeal 2019-005889
Application 13/290,848

 8

Appellant’s arguments attacking Knowles, Pliss, or Chekuri singly for

individual shortcomings (Appeal Br. 13–16; Reply Br. 7–8, 10, 11), without

considering the combination of the references, are not effective arguments

against obviousness. See In re Keller, 642 F.2d 413 (CCPA 1981); In re

Merck & Co., 800 F.2d 1091 (Fed. Cir. 1986).

 Here, Knowles teaches that a memory profile 305 for each of a

plurality of virtual machines 232 is stored in the database or table, and that

the memory profile may be a profile stored in a control virtual machine

232A. See Knowles Fig. 3A, ¶ 87 (emphasis added). The Examiner maps the

virtual machine profile of Knowles to the unique identifier limitation. See

Ans. 4–5, 6. Knowles further teaches that the memory profile includes,

among other things, a target memory amount 326. Knowles ¶ 86 (emphasis

added). A memory manager 350 compares actual memory allocated or used

by each virtual machine, and

[W]hen the memory manager 350 determines that the actual
memory allocated to or used by a particular virtual machine is
greater than the target memory amount 326 for that virtual
machine, the memory manager 350 can reclaim additional
memory from that virtual machine. . . .[T]he memory manager
350 can identify at least one virtual machine 232 that has an
actual memory usage value less than the target memory value
or amount 326 assigned to that virtual machine.

Knowles ¶ 101 (emphases added). The Examiner maps the Knowles target

memory amount to the temporary memory limit limitation and the actual

memory allocated or used of Knowles to the quantity of bytes limitation. See

Ans. 4–5, 6. We agree with the Examiner that Knowles teaches the memory

profile storing the unique identifier and the temporary memory limit, and

therefore each slot storing, for a corresponding one of the virtual machines,

Appeal 2019-005889
Application 13/290,848

 9

i.e., processes (see claim 13), the unique identifier and temporary limit

limitations. See Ans. 4–5, 6.

 Notably, the Examiner further cites Chekuri for teaching that, “[a] d-

dimensional vector can be used to represent each multi-dimensional task.

The components of the d-dimensional vector represent the amount of

resources required by the task from each of the d system resources and can

be derived or estimated from system parameters.” Final Act. 7; see also

Chekuri 3:43–47 (emphasis omitted). In other words, Chekuri teaches a

vector that stores, for a corresponding one of a plurality of processes, an

actual amount of resources used by the process, i.e., a quantity of bytes

allocated. See Chekuri 3:43–47; claim 13.

 In view of the above teachings of Knowles and Chekuri, we agree

with the Examiner that the claimed vector comprising slots, each slot storing

for one a plurality of processes, the unique identifier, quantity of bytes, and

temporary memory limit limitations, is taught by the combination of

Knowles, Pliss, and Chekuri. Final Act. 7; Ans. 4–5, 6.

 We are further guided that “[r]ejections on obviousness grounds

cannot be sustained by mere conclusory statements; instead, there must be

some articulated reasoning with some rational underpinning to support the

legal conclusion of obviousness.” KSR Int’l Co. v. Teleflex Inc., 550 U.S.

398, 418 (2007) (quoting In re Kahn, 441 F.3d 977, 988 (Fed. Cir. 2006)).

 Here, the Examiner additionally concludes that it would have been

obvious to a skilled artisan at the time of the invention to combine the

teachings of Knowles and Chekuri, “because a vector data structure lends

itself well to array-matrix operations and optimizations which could be

advantageously implemented to schedule multidimensional tasks/VMs.”

Appeal 2019-005889
Application 13/290,848

 10

Final Act. 7, Ans. 7 (citing Chekuri 1:8–21, 2:39–67) (emphasis omitted).

As such, we disagree with Appellant’s contentions that the Examiner’s

findings and conclusion of obviousness amount to common sense used to fill

a gap in the prior art, bald conclusions required to make a creative leap to

bridge a gap, or relying on inherency. Appeal Br. 13–16; Reply Br. 9, 12–13.

Instead, the Examiner has proffered an articulated reasoning with rational

underpinnings for the combination, namely an improvement to scheduling

multi-dimensional tasks or virtual machine processes. Final Act. 7; Ans. 7.

 Appellant argues that Knowles and Chekuri fail to teach the claimed

“determining” step and “signaling, in response to the determining” steps.

Appeal Br. 16–17; Reply Br. 10–11; see also claim 13. We have considered

these arguments, which do not point to any specific alleged errors by the

Examiner, and find them unpersuasive in view of the Examiner’s findings

with respect to Knowles. Final Act. 5. We agree with the Examiner’s

findings, conclusions and underlying reasoning and adopt them as our own.

B. Whether the combination of Knowles, Pliss, and Chekuri teaches the
second process releasing an amount of memory to the shared memory
in response to the reducing and storing the released memory in a
process-local cache, the amount of memory released proportional to
the overall usage of the second temporary memory limit of the second
process

The Examiner concludes that Knowles and Pliss teach the disputed

limitations (hereinafter “releasing, reducing, and storing” limitations) above,

because Knowles teaches requesting memory from each virtual machine,

and Pliss teaches a remedial garbage collection requiring free cached data

associated with a task. Final Act. 6 (citing Knowles Fig. 4; Pliss 2:18–23);

Ans. 8–9 (citing Knowles Abstract, ¶ 98).

Appeal 2019-005889
Application 13/290,848

 11

Appellant disagrees, arguing that “the inflation and deflation of

balloon drivers of Knowles or the ‘garbage collection’ of Pliss” do not teach

the limitation. Appeal Br. 17; Reply Br. 11 (both citing Spec. ¶ 19;

emphases omitted). Appellant further argues that Knowles “requires” each

virtual machine to free memory by “forc[ing]” the virtual machines to

release memory using balloon drivers, whereas, “[a]s the published

application clearly states, the claimed memory allocator uses a technique to

signal” release of an amount of memory by one of the processes proportional

to usage, or that the memory allocator “can request . . . release” of memory

allocated to the process. Appeal Br. 19–20; Reply Br. 3, 13 (both citing

Spec. ¶ 18).

Although claim terms are interpreted in light of the specification, we

do not read limitations from the specification into the claims. See

Constant v. Advanced Micro-Devices, Inc., 848 F.2d 1560, 1571–72 (Fed.

Cir. 1988), cert. denied, 488 U.S. 892 (1988) (various limitations on which

appellant relied were not stated in the claims; the specification did not

provide evidence indicating these limitations must be read into the claims to

give meaning to the disputed terms); see also In re Am. Acad. of Sci. Tech

Ctr., 367 F.3d 1359, 1364 (Fed. Cir. 2004). In addition, proper claim

construction requires a broadest reasonable interpretation consistent with the

specification. In re Bond, 910 F.2d 831, 833 (Fed. Cir. 1990); see also

Phillips v. AWH Corp., 415 F.3d 1303, 1317 (Fed. Cir. 2005).

Per the guidance above, we find Appellant’s argument that Knowles

requires or forces the virtual machines to release memory (Appeal Br. 19–

20; Reply Br. 3, 13) to be not commensurate with the scope of claim 13. In

particular, “a technique” to signal and “can request” release, are not recited

Appeal 2019-005889
Application 13/290,848

 12

in the claim. See claim 13. Furthermore, the language of the claim 13 does

not preclude the alleged requiring and forcing release of memory of

Knowles. See id.

To the extent that Appellant’s argues that Knowles does not teach the

claimed “signaling” or amount of memory release proportional to the overall

usage (Appeal Br. 19–20; Reply Br. 3, 13), we disagree. Notably, Knowles

teaches that “the memory manager 350 can then instruct a balloon driver

310” to inflate to reclaim “a predetermined number of memory pages (e.g.[,]

amount of memory),” and “[t]he memory manager 350 can then instruct the

balloon driver” to deflate to allocate the reclaimed memory pages to other

virtual machines. Knowles ¶ 98. In other words, Knowles teaches that the

memory manager sends a signal to the balloon driver, instructing it to either

inflate or deflate. Id. Furthermore, Knowles teaches in paragraph 101,

replicated supra at 6, a virtual machine releasing an amount of memory

proportional with actual memory allocated or used, i.e., overall usage, by the

machine. Knowles ¶ 101.

Regarding Appellant’s contention that the releasing and storing of

memory in the process-local cache “can allow for quick reuse of memory”

(Appeal Br. 17; Reply Br. 11), the Examiner additionally finds, and we

agree, that a process-local cache, as recited in the claim:

is not defined as any special-purpose memory “reservoir” and
as such, a broadest reasonable interpretation of the limitation
“storing the released memory in a process-local cache” is
understood to correspond to the allocation of memory resources
to a process/VM and the subsequent “storage” of that allocated
memory within any available memory reservoir which is
available to the VM. In other words, a process-local cache is
understood to be any memory/buffer/cache which is used by the
process/VM such that this would be the primary reservoir into

Appeal 2019-005889
Application 13/290,848

 13

which new/additional memory would be added after
(re)allocation.

Ans. 8 (original emphasis omitted; emphasis added). We agree and adopt the

Examiner’s reasoning here. Although Appellant’s Specification discloses “a

process-local cache or quick reuse” (Spec. ¶ 19), consistent with the

guidance above, we do not read “quick reuse” into the claims. The

Examiner’s broadest reasonable construction of a process-local cache is

consistent with Appellant’s Specification (see Ans. 8), and Appellant does

not provide arguments to rebut the Examiner’s broadest reasonable

interpretation. See Appeal Br. 17; Reply Br. 11.

Accordingly, we find no error with the Examiner’s conclusions in this

regard. In addition, by a preponderance of the evidence, we agree with the

Examiner’s conclusion of obviousness of the releasing, reducing, and storing

limitations, finding that Knowles teaches reclaiming and reducing memory

for a virtual machine in an amount proportional to the overall usage of the

machine, and allocating the memory to an available memory reservoir of

another virtual machine. Final Act. 6; Ans. 8–10.

For the foregoing reasons, we sustain the Examiner’s obviousness

rejection of claim 13. Arguments directed to claims 24, 28, and 36 refer to

arguments presented for claim 13. Appeal Br. 21; Reply Br. 14. Therefore,

we sustain the Examiner’s obviousness rejection of claims 13, 19, 24, 27, 28,

31–34, and 36.

Appeal 2019-005889
Application 13/290,848

 14

CONCLUSION

 The Examiner did not err in rejecting claims 13, 19, 24, 27, 28, 31–34,

and 36 as being obvious under 35 U.S.C. § 103, over the cited combination

of references.

DECISION

In summary:

TIME PERIOD FOR RESPONSE
No time period for taking any subsequent action in connection with

this appeal may be extended under 37 C.F.R. § 1.136(a)(1)(iv). See

37 C.F.R. § 1.136(a)(1)(iv).

AFFIRMED

Claim(s)
Rejected

35 U.S.C.
§

Reference(s)/Basis Affirmed Reversed

13, 19, 24,
27, 28, 31–
34, 36

103(a) Knowles, Pliss,
Chekuri

13, 19, 24,
27, 28, 31–

34, 36

	UNITED STATES PATENT AND TRADEMARK OFFICE
	Ex parte IVAN SCHRETER and DANIEL BOOSS
	Appeal 2019-005889
	Application 13/290,848
	Technology Center 2100
	BEFORE JOHNNY A. KUMAR, BETH Z. SHAW, and
	KUMAR, Administrative Patent Judge.
	Pursuant to 35 U.S.C. § 134(a), Appellant0F appeals the Final Rejection of claims 13, 19, 24, 27, 28, 31–34, and 36. We have jurisdiction under
	35 U.S.C. § 6(b).
	We AFFIRM.
	INVENTION
	The claimed invention relates to process-based memory allocation to dynamically allocate portions of memory to processes and free portions of memory when they are no longer needed. Spec. 1–2. Claim 13 is illustrative of the invention and is repr...

